I figured reading through my last two posts, they’re kind of dense and assume you know some things that I don’t really fully know.
For example, chemistry. I’m not much for chemistry. I know what H2O is. CO2, also. it doesn’t go much further than that. If you are a chemist and you find a mistake here, have at it.
What was I assuming would happen with some addition of chromium to the prior 1095 steel composition.
Steel is generally two parts – you can see the two parts in my carbide pictures. The lattice or matrix is who knows what – I would refer to it as just that, the lattice or matrix. If the grains grow large, it becomes less strong in many cases. The carbides are what they are. A composition or accumulation of something that so far as I can tell is another element with carbon. So, if you have a lattice that can undesirably absorb excess carbon, then maybe if you give the carbon somewhere else to go, that won’t happen as easily.
What are some compositions of carbides? Iron carbides, or cementite 3 iron atoms and one carbon. By mass, iron is much greater so the actual weight is more than 90% iron.
Chromium carbides – three chromium and two carbon, but there is more than one composition for chromium carbides and to look further, my eyes are glazing over. I think the “3 and 2” type is the hard carbide that we appreciate as woodworkers.
Tungsten carbide, one tungsten, one carbon – and so on.
It’s my supposition that the addition of more than a little excess carbon to the steel toughens it by giving some of the carbon somewhere else to go. Beyond that, I can tell you from experience that hardening 52100 with a simple non-oven regimen is more difficult than 26c3, 1095, O-1 or the recent crush – Sharon 50-100 (1095-ish plus 0.6% chromium). I have no idea why 52100 is more difficult, but a furnace appears to solve the problem for most knife makers.
52100, you see, has a little more carbon and more than double the chromium vs. 50-100, and for that matter, also vs. O-1. I’m guessing, and you could probably find the real explanation easily, that there is enough chromium to occupy a lot of carbon and less ends up in the lattice- especially less excess.
I find this kind of interesting, and here’s why – two pictures of O1 steel and 52100. I really thought 52100 would be a go-to for chisels because it can obtain absurd toughness. That means that you can probably push the temper harder and still have enough toughness -great strength and enough toughness. With so little alloying in it, you would expect it would be very fine grained with an even edge – one that looks like a laser line.


The progression of carbide elements over time is interesting. It seems like a little bit of excess carbon (like 0.25%) is not a good thing.
The 26c3 alloy that I use for chisels is very little adjusted from iron and carbon plus a little manganese except for a small amount of chromium. It is much tougher than I expected, though furnace schedules don’t show the same toughness at same hardness as my samples did. I showed 63.8 hardness and 12 ft-lbs of toughness on average where the commercial schedules show about the same hardness and 8 ft-lbs of toughness in the same toughness tester and the same test.
This is a gift – a steel so good for hand heat treatment that at least at this point, seems to fare better than the commercial heat treating schedules. But I think – just guessing – what allows this is what also makes 52100 better to optimize in a furnace. That is, I don’t soak steel – it’s a fools errand in the open atmosphere. 52100 needs to be soaked precisely at a temperature that carbon will migrate away from the steel – so it’s a no-go with an open atmosphere forge. However, it is so tough – even in my samples, that it is hard to break at high hardness. Many multiples of O-1 steel toughness and I think that toughness creates a problem in that the edge of a woodworking tool – it will deform and hang on when we want any small damage to just let go.
This explanation is also why you can’t just rely on a knife forger or amateur knife smith to tell you what makes a good plane iron or chisel. Much of the hobby knife crowd loves toughness and edge stability is secondary in general use. Why? If you have a broken knife, do you care how well it holds an edge?
But, back to the carbides. Iron carbides were common in plain steels with excess carbon. Where else will the excess carbon go when it can’t be dissolved into the lattice further? At the turn of the century and maybe before or a few years after, whatever the case may be, tungsten became popular. Tungsten carbides add wear resistance but they dissolve at temperatures common in forging. As the amount of them increases as a % of steel composition, the forgiveness in this process decreases. There is tungsten in O-1, but it’s very little.
At some point, chromium (A2 and others along with stainless steels) and molybdenum (M2 high speed steel) show up in greater quantities. M2 is apparently cheaper than tungsten high speed steels, and A2 has better wear resistance than O1 along with air hardening as a side benefit, and it moves less when heat treated. That last bit is economically attractive for commercial users.
Back to the tungsten – the interesting thing about early tungsten steels is that they improved toughness. Did they do this by attracting carbon? I don’t know – ask a metallurgist. Maybe tungsten also does something in the lattice between the carbides. But too much of a good thing and tungsten carbides don’t disperse evenly and that’s not great. Japanese blue steel suffers this problem- it can temper harder than O1 steel, but most of the samples that I’ve seen have carbide dispersion problems. See the picture below of a plane iron made by tsunesaburo, and this is at *half* of the magnification shown in the carbide pictures above. This picture was taken several years ago just trying to observe edge wear and see if any alloys nicked or failed more easily.

So, why deal with more carbides in the first place if they’re not being used to help the iron and carbon perform better? I know what I wanted that answer to be when I was a beginner – finding a “better” and better and better and harder and harder and longer wearing and so on plane iron. This is a fascination with beginners and an opportunity for marketers.
In an ideal situation, the carbides in an XHP (likely V11) iron will leave the matrix evenly and the steel will look like dense tapioca. This is great until there’s a nick in the edge, because you have to hone through those carbides to remove it. I haven’t yet seen a steel with large carbide content that actually holds a fine edge without nicking a bit more easily. The bargain is lost a little bit for someone who can hone quickly and freehand. Simply put, we want to hone away wear, but not defects. Especially not defects in steel that wears slowly.

The answer as to why this nicking occurs, and why I’m interested in alloying elements to support iron and carbide and not to become more and more dense and chase more wear, is that carbides are brittle. Cracks start in carbides, and then travel out. What little I’ve been able to find in terms of pictures of carbides and cracking started always shows the carbides cracking first. I’m bold enough to say this flatly because along with those pictures, Larrin Thomas says the same thing.
The curious part is that there’s no hard and fast rule easy for a woodworker to follow – 1095 and O-1 are relatively low toughness with little visible in them that would look like a starting point for a crack. 1084 and 52100 both also look very fine in micrographs – both can be extremely tough where 1095 and O-1 hit a point where you can’t just temper them further to get more toughness. That’s called “tempering embrittlement” or something of that sort – it’s beyond me and fortunately it’s beyond the point where I’d temper anything – often 450F-500F plus in simple steels.
Larrin Thomas has a great site – he knows 8000x as much as I do because he’s a pro. I don’t like to read too much first before experimenting because there are too many variables, but I find his site to be superb for explaining things after I don’t get results that I’d like to see. In the context of this conversation about carbides and the lattice in steel, seeing the actual grains in the lattice is not something I’ve observed visually. I think to do it well takes an SEM and some kind of etchant – usually nitric acid for visual work and for an SEM, I don’t know. Nitric acid isn’t generally something sold to the public as an etchant, though it’s not illegal. It’s a little dangerous, and Larrin told me snapping samples would be good enough …he didn’t say for a dummy, but I’m saying – for this dummy, it’s good enough.
However, you can look through micrographs on larrin’s site – there’s a lot of them, but in there somewhere is most of what we’re familiar with. To see the micrographs of XHP (V11) and the various D2s (there are three – despite the persistent myth that D2 is always large grained and not available in PM – one that is touted by uncurious people on woodworking forums), A2s, 1095 and so on. Even 26c3 is there. Sharon 50-100 isn’t.
What’s nifty on these micrographs is to see steel heat treated by pros, and then to see if my samples show any carbide distribution issues. So far, I’ve had good luck, though subpar results in 1084 due to lack of experimentation, and a slightly soft sample of XHP for a technical supposition that I changed to after just making XHP really hot and quenching it early on.
Lastly, am I picking on PM V11? Not really – I adored it in a standardized test. In regular work, I saw too many shavings splitting too early in the process and split shavings lead to more honing work. I mention it rather than A2 or ingot (non powder) D2 because I think the middle is a no-man’s land. as in, what’s the point of A2 now if you can get V11 for almost the same price? if you have to have the wear resistance, I’d choose V11.
But I also think if I’ve put information on forums showing that V11 lasts twice as long planing a pleasant piece of wood that if I see something that works against that in regular work – and I do – sitting on it is unethical. I’m a nobody, but there are people who will quote stuff that I publish and when I see things I’ve said being used in a context where they don’t actually hold up – no bueno.
(oh…and by the way. how is the word strength applied here differently than toughness? Tough is resistance to breaking completely. Strength, at least at the first level, is being resistant to deformation at all. Some steels tolerate a lot of deformation before breaking completely, but those steels tempered for very high toughness tend to be less great at having strength and a stable fine edge)




























